Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 10(1): 50, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084578

RESUMO

Alterations in the strength of excitatory synapses in the hippocampus is believed to serve a vital function in the storage and recall of new information in the mammalian brain. These alterations involve the regulation of both functional and morphological features of dendritic spines, the principal sites of excitatory synaptic contact. New protein synthesis has been implicated extensively in the functional changes observed following long-term potentiation (LTP), and changes to spine morphology have similarly been documented extensively following synaptic potentiation. However, mechanistic links between de novo translation and the structural changes of potentiated spines are less clear. Here, we assess explicitly the potential contribution of new protein translation under control of the mechanistic target of rapamycin (mTOR) to LTP-associated changes in spine morphology. Utilizing genetic and pharmacological manipulations of mTORC1 function in combination with confocal microscopy in live dissociated hippocampal cultures, we demonstrate that chemically-induced LTP (cLTP) requires do novo protein synthesis and intact mTORC1 signaling. We observed a striking diversity in response properties across morphological classes, with mushroom spines displaying a particular sensitivity to altered mTORC1 signaling across varied levels of synaptic activity. Notably, while pharmacological inhibition of mTORC1 signaling significantly diminished glycine-induced changes in spine morphology, transient genetic upregulation of mTORC1 signaling was insufficient to produce spine enlargements on its own. In contrast, genetic upregulation of mTORC1 signaling promoted rapid expansion in spine head diameter when combined with otherwise sub-threshold synaptic stimulation. These results suggest that synaptic activity-derived signaling pathways act in combination with mTORC1-dependent translational control mechanisms to ultimately regulate changes in spine morphology. As several monogenic neurodevelopmental disorders with links to Autism and Intellectual Disability share a common feature of dysregulated mTORC1 signaling, further understanding of the role of this signaling pathway in regulating synapse function and morphology will be essential in the development of novel therapeutic interventions.


Assuntos
Espinhas Dendríticas/metabolismo , Potenciação de Longa Duração , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Regulação para Baixo/efeitos dos fármacos , Glicina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos
2.
Brain ; 139(Pt 7): 2082-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217338

RESUMO

SEE STEPHAN ET AL DOI101093/AWW120 FOR A SCIENTIFIC COMMENTARY ON THIS WORK: Real world information is often abstract, dynamic and imprecise. Deciding if changes represent random fluctuations, or alterations in underlying contexts involve challenging probability estimations. Dysfunction may contribute to erroneous beliefs, such as delusions. Here we examined brain function during inferences about context change from noisy information. We examined cortical-subcortical circuitry engaging anterior and dorsolateral prefrontal cortex, and midbrain. We hypothesized that schizophrenia-related deficits in prefrontal function might overestimate context change probabilities, and that this more chaotic worldview may subsequently gain familiarity and be over-reinforced, with implications for delusions. We then examined these opposing information processing biases against less expected versus familiar information patterns in relation to genetic risk for schizophrenia in unaffected siblings. In one experiment, 17 patients with schizophrenia and 24 normal control subjects were presented in 3 T magnetic resonance imaging with numerical information varying noisily about a context integer, which occasionally shifted up or down. Subjects were to indicate when the inferred numerical context had changed. We fitted Bayesian models to estimate probabilities associated with change inferences. Dynamic causal models examined cortical-subcortical circuitry interactions at context change inference, and at subsequent reduced uncertainty. In a second experiment, genetic risk for schizophrenia associated with similar cortical-subcortical findings were explored in an independent sample of 36 normal control subjects and 35 unaffected siblings during processing of intuitive number sequences along the number line, or during the inverse, less familiar, sequence. In the first experiment, reduced Bayesian models fitting subject behaviour suggest that patients with schizophrenia overestimated context change probabilities. Here, patients engaged anterior prefrontal cortex relatively less than healthy controls, in part driven by reduced effective connectivity from dorsolateral prefrontal cortex to anterior prefrontal cortex. In processing subsequent information indicating reduced uncertainty of their predictions, patients engaged relatively increased mid-brain activation, driven in part by increased dorsolateral prefrontal cortex to midbrain connectivity. These dissociable reduced and exaggerated prefrontal and subcortical circuit functions were accentuated in patients with delusions. In the second experiment, analogous dissociable reduced anterior prefrontal cortex and exaggerated midbrain engagement occurred in unaffected siblings when processing less expected versus more familiar number sequences. In conclusion, patients overestimated ambiguous context change probabilities with relatively reduced anterior frontal engagement. Subsequent reduced uncertainty about contextual state appeared over-reinforced, potentially contributing to confirmation bias and a cascade of aberrant belief processing about a more chaotic world relevant to delusions. These opposing cortical-subcortical effects relate in part to genetic risk for schizophrenia, with analogous imbalances in neural processing of less expected versus familiar information patterns.


Assuntos
Conectoma/métodos , Delusões/fisiopatologia , Mesencéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Antecipação Psicológica/fisiologia , Delusões/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Irmãos , Pensamento/fisiologia , Incerteza , Adulto Jovem
3.
Mol Cancer Ther ; 11(4): 984-93, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22334590

RESUMO

Constitutively activated STAT3 and STAT5 are expressed in a wide variety of human malignancies including solid and hematopoietic cancers and often correlate with a poor prognosis and resistance to multiple therapies. Given the well established role of STAT3 in tumorigenesis, inhibition of Janus-activated kinase 2 (JAK2) activity might represent an attractive therapeutic approach. Using a mouse model of colitis-induced colorectal cancer, we show that a novel, orally active, selective JAK2 inhibitor, CEP-33779, induced regression of established colorectal tumors, reduced angiogenesis, and reduced proliferation of tumor cells. Histopathologic analysis confirmed reduced incidence of histologic-grade neoplasia by CEP-33779. Tumor regression correlated with inhibition of STAT3 and NF-κB (RelA/p65) activation in a CEP-33779 dose-dependent manner. In addition, the expression of proinflammatory, tumor-promoting cytokines interleukin (IL)-6 and IL-1ß was strongly reduced upon JAK2 inhibition. The ability of CEP-33779 to suppress growth of colorectal tumors by inhibiting the IL-6/JAK2/STAT3 signaling suggests a potential therapeutic utility of JAK2 inhibitors in multiple tumors types, particularly those with a strong inflammatory component.


Assuntos
Colite/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Modelos Animais de Doenças , Feminino , Humanos , Janus Quinase 2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Inibidores de Proteínas Quinases/farmacocinética , Piridinas/farmacocinética , Triazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...